Virulence factors and their importance in pathology

Andreas Peschel

Cellular and Molecular Microbiology University of Tübingen, Germany

University of Tübingen

Old town

Medical Microbiology Dept.

Current challenges in microbiology:

Major cause of mortality:

3rd frequent cause of mortality in developed countries

New pathogens: SARS, AIDS, *Helicobacter pylori,* Q fever, ...

Antibiotic resistance: Multiresistant staphylococci, enterococci, mycobacteria,...

Bioterrorism: Anthrax, smallpox...

Sepsis patient

The human body surface is an ecosystem for > 500 bacterial species

Why do certain bacteria cause disease?

What to do bacteria do when they are starving?

1. Inhibit competitors

2. Colonize new habitats

Virulence factors confer the ability to invade host tissues

Antibiotics/bacteriocins are microbial products

Antibiotic producers bear specific resistance genes

E.g. The antibiotic vancomycin:

- Produced by soil bacteria (streptomycetes)
- Lateral transfer of resistance genes!

The *Staphylococcus aureus s*tory 1941 Penicillin 1961 **Penicillinase-stable** penicillins (Methicillin) Glycopeptide (Vancomycin) OCH₃ соон COOH 2004 2002 - 2004 2004 Up to 60% resistance *3 cases* of vanco **90% resistance** (MRSA) resistance (VRSA)! by penicillinases

S. aureus infections

Infected implant

- Skin and wound infections
- Catheter and **device-related infections**
- 40% of **nosocomial infections**
- Sepsis, septic shock
- More than **30.000 deaths** per year (USA)
- Multiple antibiotic resistance (MRSA, VRSA,...)

The extremest microbial habitats:

Extremely <i>hot</i> :		ultratini section
E.g. <i>Pyrolobus</i> :	life at 113°C	
Extremely acidic:		V
E.g. <i>Picrophilus</i> .	life at pH 0,0	200 nm
Extremely <i>alcaline</i> :		
E.g. Natronobacterium:	life at pH 12	PUT SE
Extremely <i>salty</i> :		

E.g. Halobacterium: life at 32% NaCl

The extremest microbial habitats:

Extremely *hostile*:

E.g. *Staphylococcus aureus*: life exposed to the human immune system

Are mirobial pathogens rare?

Meningitis

Neisseria meningitidis, Haemophilus influencae

Scarlet fever

Streptococcus pyogenes, Streptococcus pneumoniae

Pneumonia

We are constantly exposed to **virulence factors**

Conclusions I:

Virulence factors ...

... confer the ability to invade and multiply in host tissues.

... are very diverse in origin and function.

... are frequently produced by the microbial flora.

Defense lines against microbial pathogens:

Physical defense

• **Passive** prevention of bacterial entry

Innate immune system

- In superficial infections
- Kills bacteria fast (minutes/hours)
- No lymphocytes/antibodies required

Adaptive immune system

- In severe infections
- Takes days/weeks to kill bacteria
- Uses lymphocytes & antibodies

Bacterial evasion of physical defense

 Defense mechanisms:
 Virulence factors:

 Epidermis,
 Destructive enzymes,

 tight junctions
 transmigration

 Mucous, ciliary movement
 Specific adhesins

 Low pH in the stomach
 Acid tolerance

Shigella flexneri traverses the intestinal epithelium

Shigella causes severe diarrhea (**dysentery**)

S. flexneri

1. Shigella induces phagocytoses in epitehlial cells

2. Shigella moves between cells by actin polymerization

Shigella transfers effector proteins into host cells

Ipa proteins induces phagocytosis in epithelial cells

IpaB/C are injected via a typ III secretion system and induce endoocytosis by rearranging the cytoskelleton

Conclusions II:

Pysical barriers are eluded by...

... destructive enzymes (*Candida albicans*...).

... transmigration through epithelial cells (*Shigella flexneri*...).

... tolerating low pH in the stomach (*Helicobacter pylori,...*).

Evasion of *innate* **immunity**

Virulence factors:

Peptide resistance

Evasion of phagocytosis

Disguise mechanisms, receptor antagonists

Innate human 'peptide antibiotics'

(<u>Cationic antimicrobial peptides = CAMPs</u>)

α-Defensin hNP-1 (Granulocytes,

Paneth cells, T cells)

β**-Defensin hBD1** (Epithelia, skin)

Cathelicidin LL-37

(Epithelia, skin, Granulocytes)

Thrombocidin TC1 (Platelets)

Dermcidin (Sweat glands)

D(S(V)L)

CAMPs form pores in bacterial cytoplasmic membranes

Host defenses factors are '*positive by nature'* -Bacteria are '*negative by nature'*

Antimicrobial host factors are Positively charged:

- Antimicrobial peptides
- Class IIA phospholipase A2
- Lactoferrin
- Myeloperoxidase
- Lysozyme,

Bacterial cell envelope components are Negatively charged:

- Peptidoglycan
- Teichoic acids
- Teichuronic acids
- Phospholipids (most)
- Lipid A, LPS,...

The negatively charged bacterial cell envelope:

Gram-*positive* bacteria (*Staphylococcus aureus*) Gram-*negative* bacteria (*Shigella flexneri*) Staph. aureus is resistant to defensins

Minimal inhibitory concentration of defensin hNP1-3: S. aureus wild-type: >60 μM mutant △*dltA*: 2.9 μM

Introduction of positive charges into the cell wall

Defensin-susceptible *S. aureus* mutants are virulence attenuated

Bacterial molecules activate the innate immune system and cause inflammation

Gram-*positive* bacteria (*Staphylococcus aureus*) Gram-*negative* bacteria (*Shigella flexneri*)

Host TLR receptors recognize conserved bacterial molecules

<u>Gram-positive:</u> Lipoteichoic acid, Lipopeptides

<u>Gram-negative:</u> Lipopolysaccharide

Humans have **10 different TLRs**; some ligands are still unknown

Activation of TLRs leads to inflammatory responses

TLRs \rightarrow **NF-** κ **B** (transcription factor)

Epithelial cells: → Defensin production → IL-8 produktion

Endothelial cells: → Adhesive for leukocytes → Permeabilisation

Phagocytes:

 \rightarrow Cytokine production

 \rightarrow increased killing

Chlamydia produce LPS with very low inflammatory activity

Chlamydia pneumoniae

- Obligate intracellular pathogens
- Cause persistant infections

Which bacterial molecules cause leukocyte chemotaxis?

Defensine Defensine Epithelzellen

Leucocytes recognize bacterial molecules

Courtesy T. Stossel

Role of formylated peptides in chemotaxis?

Bacterial protein synthesis starts with fMet-tRNA

S. aureus formylated peptides cause chemotaxis

S. aureus inhibits leukocyte chemotaxis by the CHIPS protein

Chemotaxis-inhibitory protein of *S. aureus* CHIPS

• CHIPS is produced by 80% of the *S. aureus* strains

• CHIPS blocks chemotaxis receptors on leukocytes

CHIPS inhibits leukocyte recruitment

How do phagocytes recognize their pray?

1. Non-opsonic phagocytosis

Direct recognition and uptake by phagocytes

< 10% efficincy

2. Opsonic phagocytosis

Phagocytosis of particles labeled with antibodies/complement

- Complement (C3b)
- Collectins (SP-A, SP-D, ...)
- Antibodies (IgG1, IgG3, IgA, IgE, ...)

> 90% efficincy

Opsonization by the complement system

Deposition of C3b causes:

- Inflammation
- Phagocytosis
- Bacterial killing

Human cells are not opsonized because of sialic acid on their surface

Factor H prevents opsonization of sialic acid-containing surfaces

Neisseria modifies its LPS with sialic acid

N. meningitidis causes **meningitis**

Many neisserial strains are ,serum resistant` → No inactivation by complement

Streptococcus pyogenes destroys leukocytes by leukocidins

- Subunits oligomerize within the leukocyte membrane
- Pore formation kills leukocytes

Conclusions III:

Innate immune mechanisms are eluded by...

... resistance to antimicrobial host factors (*S. aureus*...).

... preventing recognition (*Chlamydia pneumoniae*,...).

... preventing opsonization (*Neisseria meningitidis*...).

... destroying leukocytes (*Streptococcus pyogenes*,...).

Evasion of *adaptive* **immunity**

Defense mechanisms: Antigen-presenting cells Immunoglobulins T cells

Prevalence of the *innate* immune system:

Most higher organisms have an innate immune system

Prevalence of the *adaptive* immune system:

Only vertebrates have an adaptive immune system

Streptococcus pneumoniae produces >100 types of capsular polysaccharides

Antigenic variation causes relapsing infections

Alternating on- and offswitching of surface antigens distracts the adaptive immune system

Neisseria	Meningitis
	Sexually transmitted dis.
Borrelia	Relapsing fever
	Lyme borreliosis
Trypanoson	na Sleeping disease
(Protist)	

Protein A of *S. aureus* prevents correct opsonization with antibodies

Protein A binds the Fc part of IgG → No recognition by Fc rezeptoren possible

Conclusions IV:

Adaptive immune mechanisms are eluded by...

... antiopsonic capsules (*Streptococcus pneumoniae*...).

... immunoglobulin proteases (*Neisseria*,...).

... antigenic variation (*Trypanosoma,*...).

... preventing correct opsonization (*S. aureus*,...).

Virulence factors are far more than toxins!

Adhesins,

Evasins,

Modulins,

Agressins,.....