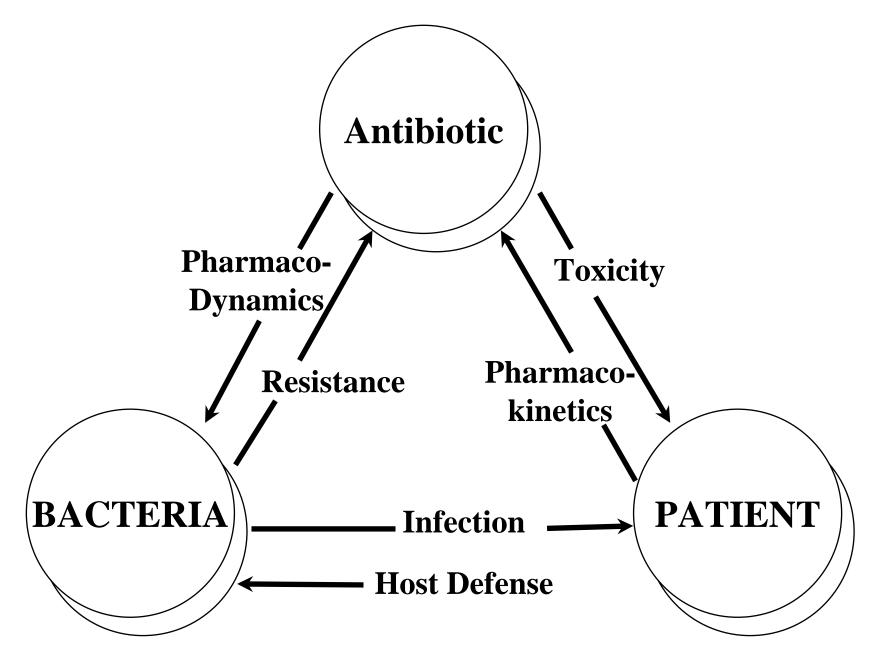


GSK-Chair of Infectious Diseases (Chaire GSK de Maladies Infectieuses / GSK-Leerstoel in Infectieziekten)

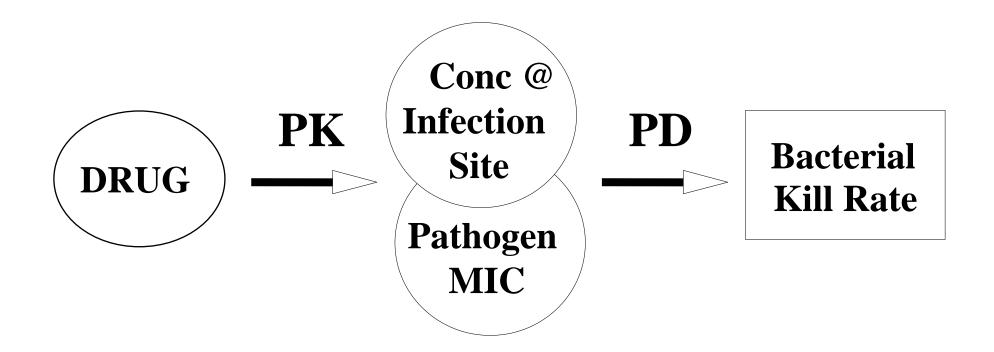
a joint academic activity of the Université catholique de Louvain and the Katholieke Universiteit Leuven

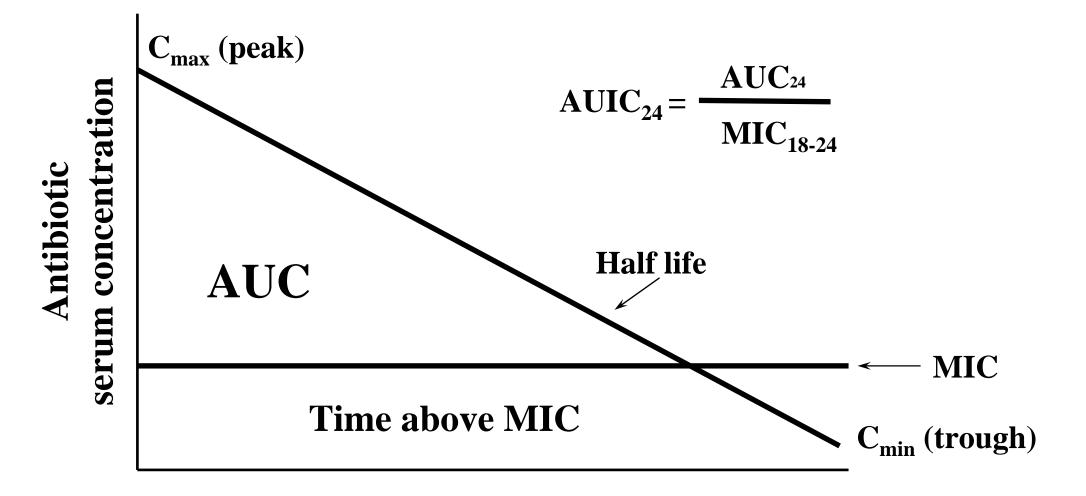
How to Adapt Antibiotic Treatments for Elderly and Other Populations

Jerome J Schentag, Pharm D


Professor of Pharmaceutical Sciences and Pharmacy

University at Buffalo


Schentag@buffalo.edu


Applied PK/PD 4 Text: Chapters on Aminoglycosides and Dual Individualization www.schentag-ce.com

Presented at UCL on Thursday February 28th

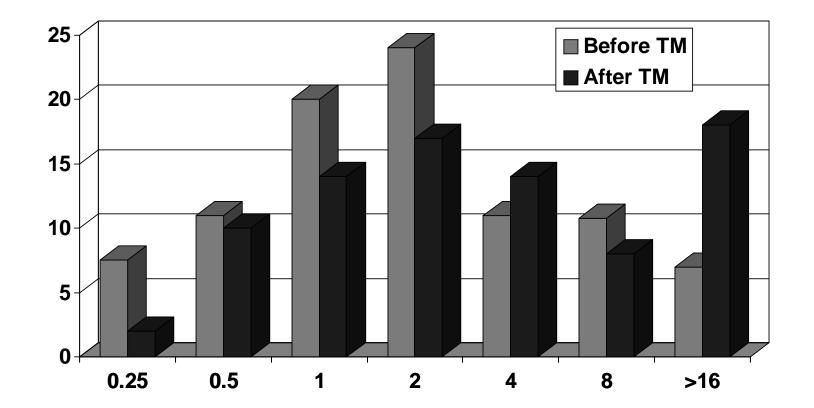
Optimizing Antimicrobial Therapy

Time

Defined and Optimal PK and PD attributes

For antimicrobial effect:

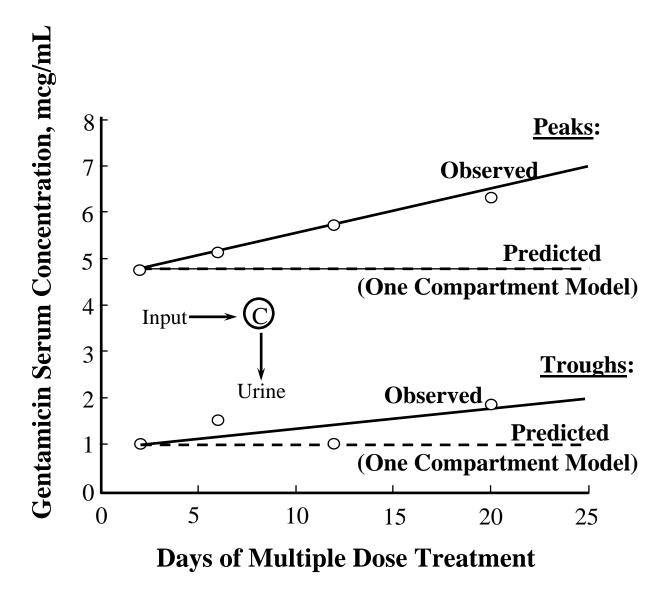
- C_{max}/MIC ratio should be > 8 to 10
- AUC/MIC ratio for 'static effect > 30
- AUC/MIC ratio for 'cidal should be > 125
- AUC/MIC ratio should be > 250 for rapid killing of organisms with conc. dependent
- To minimize resistance development:
 - -AUC/MIC ratio should be >100

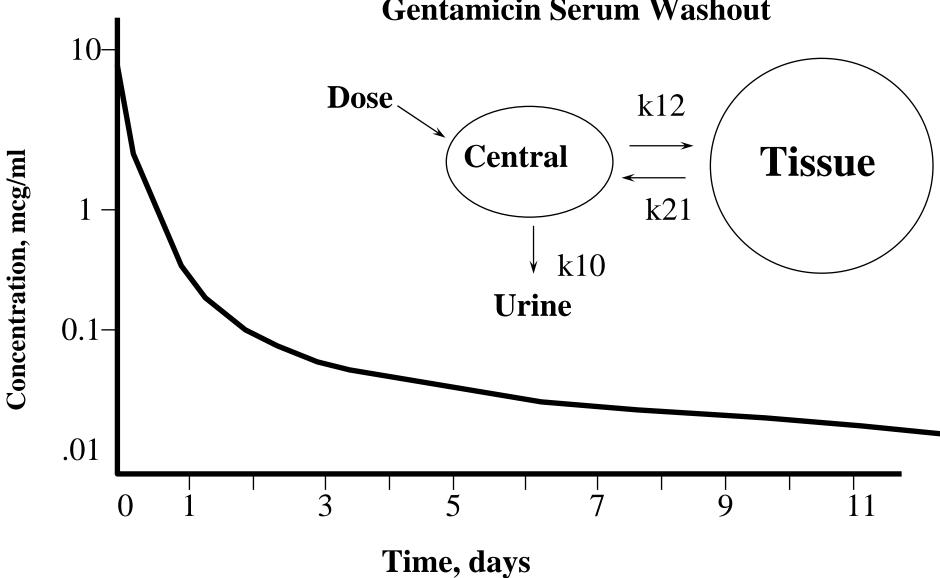

TARGETED OUTCOMES

- Clinical
 - abatement of infection
 - Overall Cure vs Time to symptom Resolution
- Microbiological
 - eradication of the causative organism(s) at EOT
 - Time to eradication
- PK/PD
 - Time to clinical cure vs time to organism eradication

Aminoglycoside Antibiotics

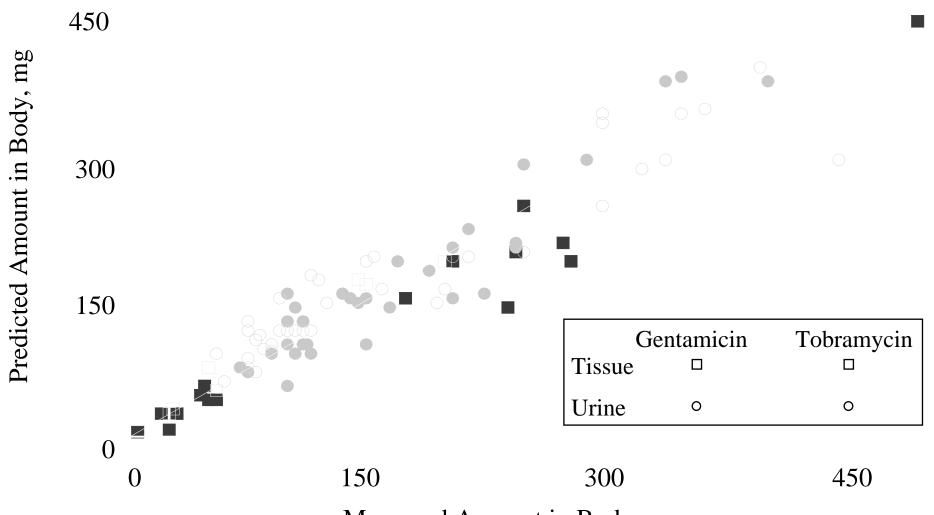
- Gentamicin
- Tobramycin
- Amikacin
- Netilmicin
- Kanamycin
- Streptomycin


Tobramycin vs Pseudomonas



NEJM 340; 23-29, 1999

Aminoglycoside Pharmacokinetics


- Removed by Glomerular Filtration
- No metabolism and minor biliary excretion
- Serum half life is about 2 hrs
 - Only 60-80% of dose found in the urine in the first 24 hrs after the dose
 - Can recover aminoglycosides from urine up to 200 hrs after last dose

Gentamicin Serum Washout

11

Measured Amount in Body, mg

12

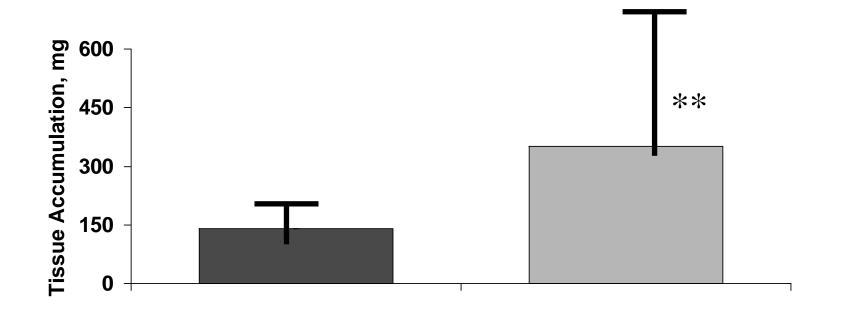
Aminoglycoside Accumulation and Disposition

- Two-compartment model for tissue accumulation
- Pharmacokinetic factors in nephrotoxicity
- Pharmacodynamics of nephrotoxicity
 - Comparisons between aminoglycosides (clinical and pharmacokinetic)

Methods

- 201 patients given 267 courses of gentamicin or tobramycin
- 240 courses evaluable
 - 120 gentamicin, 120 tobramycin
- Older adults in intensive care units:
 - Age
 - Diseases
 - Renal function
 - Dosing

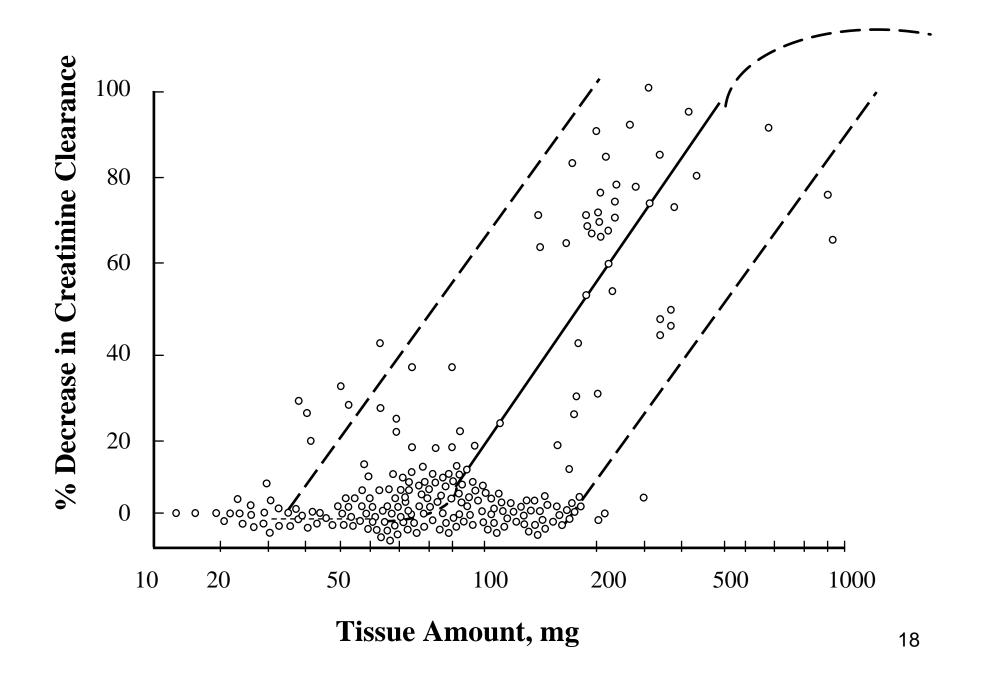
Nontoxic (199) and Nephrotoxic (41) Patients Did Not Differ Statistically In:

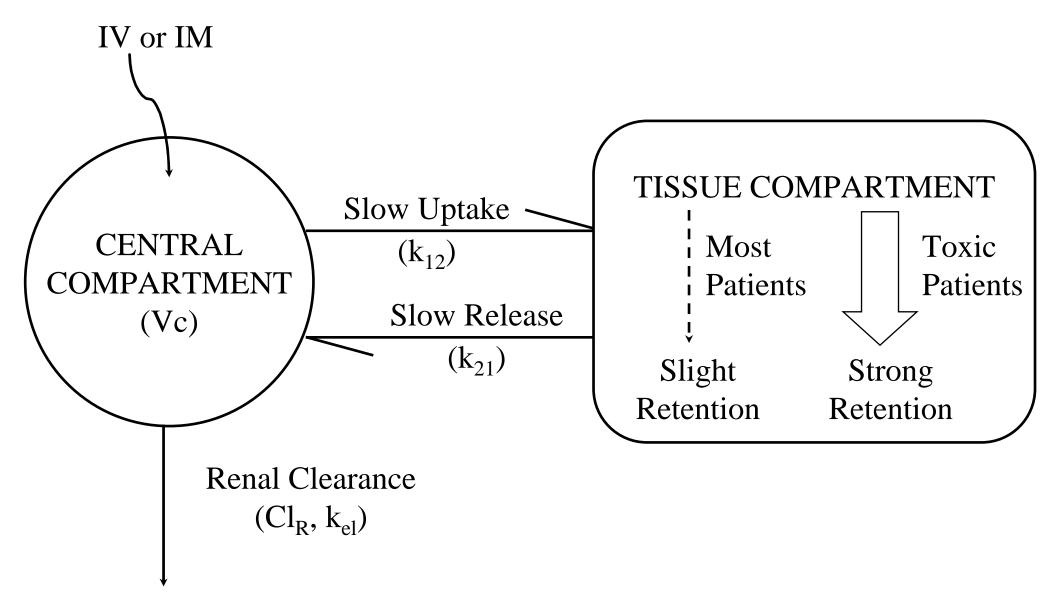

- Age (67)
- Sex (60% M)
- Weight (70 kg)
- Baseline C_{cr} (55 ml/min)
- Positive blood cultures
- Concurrent cephalosporin (36%)

- Peaks (5.4 μg/mL)
- Troughs (1.6 μg/mL)
- Duration (10 days)
- Dosage changes (1.1)
- Concurrent diuretics (58%)

Schentag AAC 21:721-726, 1982.

Comparative Tissue accumulation and Toxicity

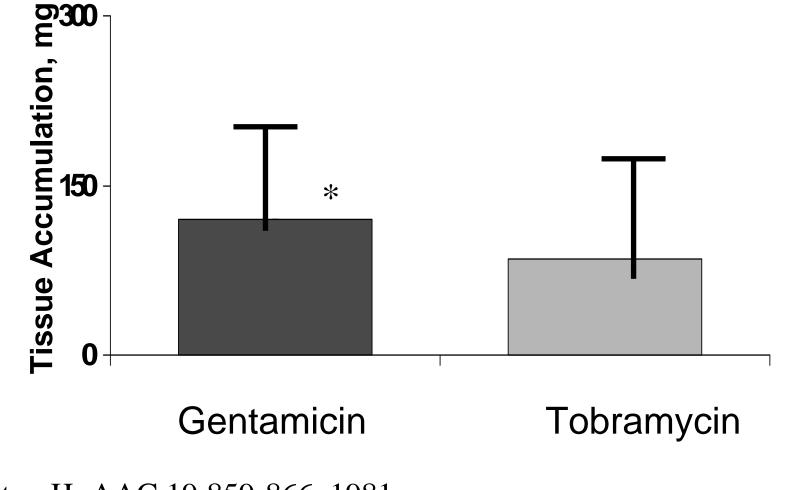

- Since aminoglycosides accumulate in all patients who receive them, we compared the rate and extent of tissue accumulation between nontoxic and nephrotoxic patients who were clinically similar.
- We sought to determine if abnormally high serum and tissue accumulation was present before renal function changes were detectable.



Nontoxic

Nephrotoxic

Schentag: AAC 21:721-726, 1982.



Patients Given Gentamicin (120) and Tobramycin (120) Did Not Differ Statistically in the Following:

- Age
- Sex
- Weight
- Creatinine clearance
- Site of infection
- Underlying disease
- Severity of disease

- Cephalosporins
- Diuretics
- Total dose
- Peaks and troughs
- Duration of treatment
- Mortality
- Positive blood cultures

Schentag JJ: AAC 19:859-866, 1981.

Comparative Aminoglycoside Nephrotoxicity

Parameter	All Gentamicin N=120	All Tobramycin N=120
Nephrotoxic (Pharmacokinetic criteria)	24%	10%**

***p* < 0.01

Schentag JJ: AAC 19:859-866, 1981.

Nephrotoxicity-Hopkins 1979

Toxicity	GM	TM	p-value
Nephro	19/72 (26%)	9/74 (12%)	0.025
Ototox	5/47	5/44	NS

NEJM 302: 1106-1109, 1979

Health Care Costs of Aminoglycoside Nephrotoxicity

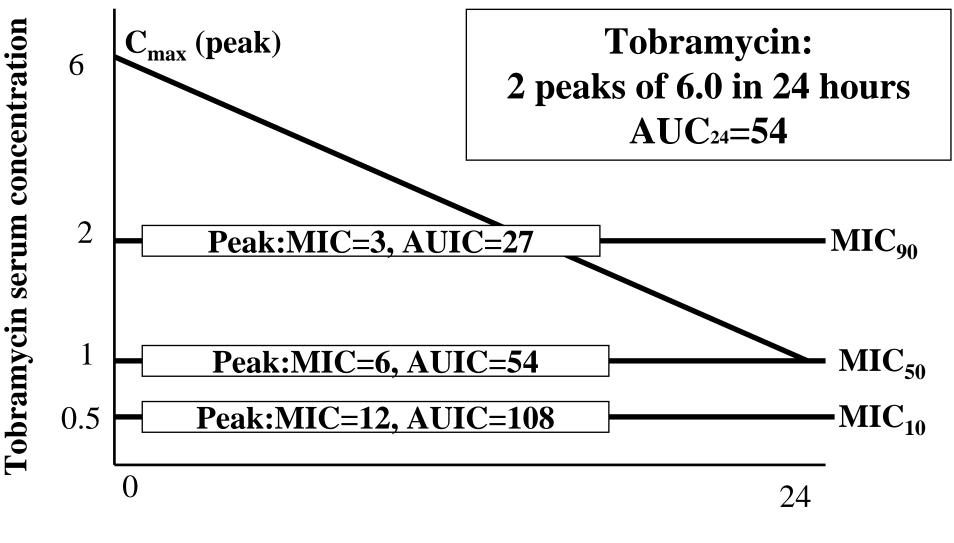
- Even mild renal damage complicates the critically ill patient, adding days in hospital, and increasing the need for supportive technology
- Each patient requiring hemodialysis adds \$15,000 per month to hospital bill
- Although small studies do not show differences, the better and the larger trials show gentamicin about 2 fold more nephrotoxic than tobramycin

Health Care Costs of Aminoglycoside Nephrotoxicity

- It costs as much to dose, monitor and treat the complication of aminoglycosides, as the drugs themselves
- Cost savings of generic gentamicin (50 cents vs \$1.00) are off-set by:
 - A greater need for monitoring tests (Cr, levels, UA)
 - A greater need for highly trained personnel to adjust doses and monitor
 - An approximately 2x greater risk of nephrotoxic reactions

Even After Individualization

- Not every blood level curve stays where you started
- Toxicity may still occur due to factors beyond the blood level
- All of these factors are worse with Gentamicin than Tobramycin

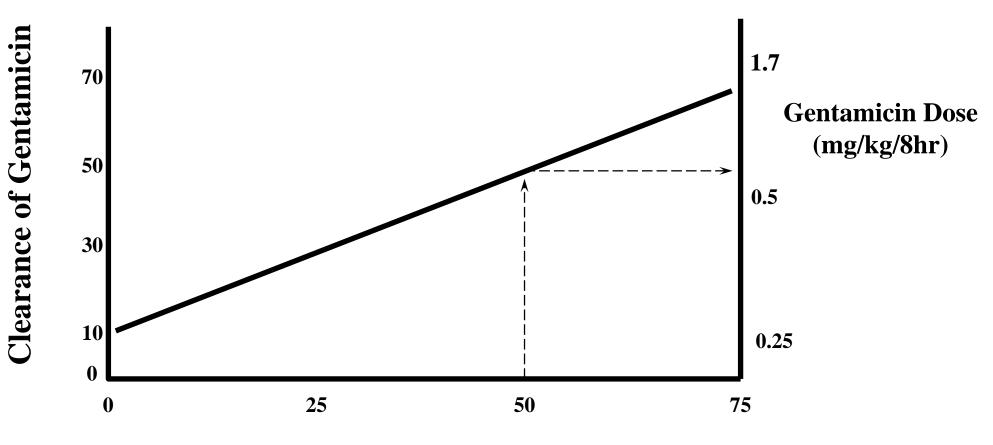

Recommendations – PK/PD and otherwise..

- Dose all patients based on their calculated creatinine clearance-Regardless of OD vs BID
- Monitor those who are at highest risk for nephrotoxicity with frequent blood levels and frequent serum creatinine measurements
- Shorten Courses to < 7 days</p>
- Use tobramycin first and hold gentamicin in reserve – Twice as active, half as nephrotoxic, and cochlear ototoxic vs. vestibular

Aminoglycoside Serum Concentration Measurements

Nephrotoxicity

- Trough concentrations > 2.0 mcg/mL
- UNPREDICTABLE once concentrations are in range.
- Cause/effect not clearly established
- Ototoxicity
 - No relationship to blood levels established, probably duration related
- Efficacy
 - Predictive PK/PD parameters:
 - Peak/MIC, AUC/MIC (AUIC)


Time, hours

Efficacy in Bacteremia

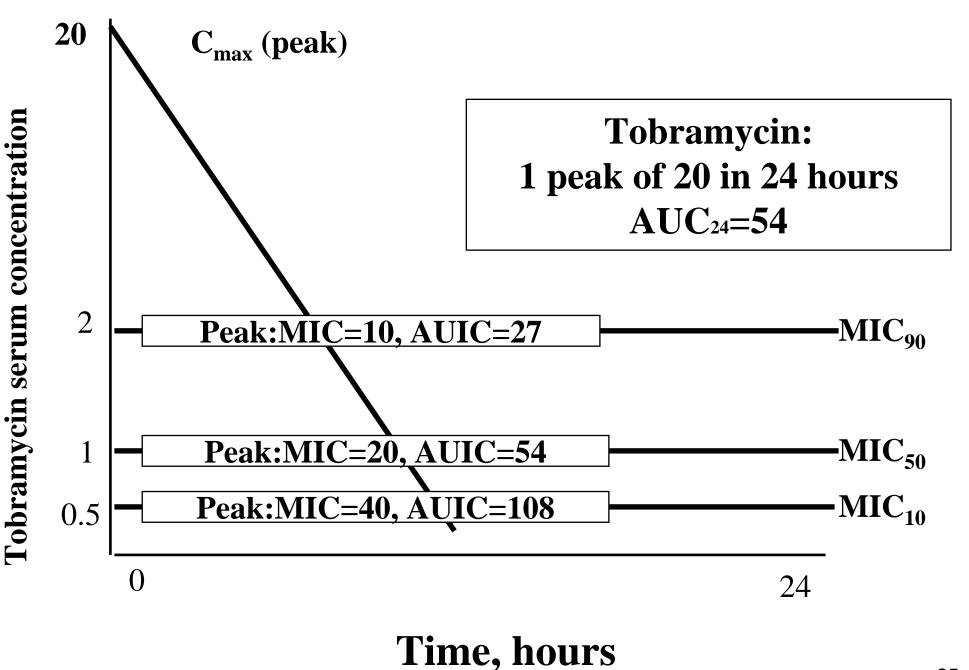
Initial C _{max}	Outcome:		
	Died	Survived	
< 5.0 mcg/ml	20.9%	79.1%	
> 5.1 mcg/ml	2.4%	97.6%	

Moore, Am J Med 77: 657-662, 1984

Chan Nomogram

Creatinine Clearance, ml/min

Efficacy vs C_{max}: Hopkins Studies


- Studies used 2 mg/kg dosing for patients every 8 hours, infused over 30 min
- In renal insufficiency, the dose was lowered, but the q. 8 hr dosing interval was retained (Dosing via Chan Nomogram)
 - This means that the data used to justify once daily dosing were derived from studies of q 8hr regimens of gentamicin and tobramycin.....

Once Daily dosing?

- The entire 24 hour regimen of 5-7 mg/kg/day is given once daily.
- In vitro data favors peak to MIC as a predictor of efficacy
- Supported by the known mechanisms of aminoglycoside action on bacteria
- Supported by animal model data of safety
- Supported for cost and convenience reasons

Single daily dosing

- Will this solve the problem of low peak to MIC ratios for the aminoglycosides?
- Will this solve the problem of low AUICs for the aminoglycosides?
- Certainly will not increase Time > MIC for these agents

Detroit Study- OD vs TID

Parameter	OD	TID
Age	44.9	46.2
S _{CR}	0.84	0.89
C _{MAX}	14.6	7.6
AUC ₂₄ /MIC	56.5	52.3
Cure + Imp %	94.4	88

McKinnon and Rybak, ICAAC 1996

Low AUIC with typical dosing and levels

• breakpoint MIC is 0.25 mcg/ml for AUIC of 125

We say their activity is decreased

- with the infection site pH below 6.0
- at urine sites due to cations
- with decreased PO₂
- due to binding at the infection site

Combination Therapy is necessary and used in most situations, because there is insufficient activity for these antibiotics to function as single agents.

Antibiotic Con	nbinations		
Compound	AUC ₂₄	MIC P.aerug	AUIC ₂₄
Tobramycin	54	1.0	54
Ceftazidime Total	400	2.0	200
(Tob+Ceftaz)			254

Aminoglycosides in Combination regimens

- Add about 25-30% of the activity needed to generate an effective regimen
- Eradicate sub-populations that would otherwise be selected by the concomitant beta lactam, lowering the overall risk of resistance
- If an AMG/BL regimen is failing:
 - Adjust the dose of the Beta Lactam....
 - Adjust the dose of the Aminoglycoside....
 - Once daily dosing for a higher peak?

Efficacy vs C_{max}: Hopkins Studies

- Peaks were obtained 30 minutes after a 30 minute infusion.
 - This means that they are post-distributional
- A variety of infections were studied, but about 60% of these patients were UTIs.
- Few LRTIs were treated (~16% of the patient population), but greater numbers of these failed.
- Remember, there was no effective concomitant antibiotic in 1979.

Why focus on AUC and AUIC?

- All of these PK parameters change in parallel with each other, as the dose changes in relationship to the patient's clearance
- None of the data used to justify once daily use is based on optimized peaks
- Whenever you raise the dose, you increase the peak, but also the AUC

Single daily dosing

- Will this solve the problem of low peak to MIC ratios for the aminoglycosides?
- Will this solve the problem of low AUICs for the aminoglycosides?
- Will this solve the problem of Ototoxicity?
- Will this solve the problem of Nephrotoxicity?

Nephrotoxicity: Detroit

	OD	TID	p-value
# Eval pts	187 (94%)	95 (95%)	
Nephrotox	14 (7.5%)	14(15%)	0.05
chg in S _{CR}	0.36	0.57	0.15
Concomitant Vancomycin in N-Tox	35.7%	64.3%	0.13

Why focus AMGs on AUC?

- At the same average dose, AUCs remain constant with changes of interval.
- Unfortunately, peaks change.
- When Dosing, it is most useful to determine an AUC for patients dose and clearance;
 - This assures a safe AUC of 50-60 per 24 hours, regardless of the shape of the curve;
 - Then the interval can be either once daily or divided using q 24, q12 or q8hr increments

Why Focus AMGs on AUC?

- AUC correlates to total dose over time.
- AUC is the best overall safety measure
- AUC is independent of the shape of the curve
- AUC/MIC is a parameter predictive of clinical and microbiological outcome in the available q. 8hr studies
 - even with the varied times that levels were drawn.

Use of AUIC in Patient Care-Case 06

- 56 yoM, 68 in, 190 lb, with COPD, early Diabetes, with perforated diverticulum.
- Abdominal X-Ray has free air
- Currently receiving no antibiotics. Serum creatinine is 1.2 mg/dl on admission to ER
- Gentamicin 400 mg Q24 hr is ordered along with Unasyn (ampicillin-sulbactam) for anaerobes
- You were consulted for antibiotic management
 - Should you allow this regimen to be used?

Calculation of AUICs

DOSE/Clearance=AUC
Clearance = CCr(x) +Cl_{nr}
Adjust AUC for 24 hr of Dosing
MIC as Default or Exact value?
AUIC₂₄=AUC₂₄/MIC

ANTIBIOTIC UTILIZATION INFORMATION AND CONSULTATION ANTIBIOTIC UTILIZATION INFORMATION AND CONSULTATION

Version 1.0.0a

Copyright 1987–2000 by Jerome J Schentag PharmD, and Martin H Adelman PhD, Buffalo, NY, USA

> Developed by: Martin H. Adelman, PhD and Jerome J. Schentag, PharmD

INDICATIONS FOR AMINOGYCOSIDE Concentrations, in conventional therapy

- Not routinely performed
 - Uncomplicated UTI
 - Synergy dosing
- Routinely performed, therapy > 72 hours
 - Changing renal function
 - Underlying renal impairment (incl. elderly)
 - Septic or immunosuppressed patients
 - Altered pharmacokinetics
 - Not responding to therapy or have suspected AG-related toxicity, but therapy to continue

Aminoglycoside Serum concentrations

- Efficacy
 - Predictive PK/PD parameters:
 - Peak/MIC, AUC/MIC
- Ototoxicity
 - No relationship to blood levels established
 - No clinical risk factors identified
 - probably duration related
- Nephrotoxicity
 - Trough concentrations > 2 mcg/mL; AUC>80 mcg x hr/ml
 - UNPREDICTABLE once concentrations are in range.
 - Cause/effect not clearly established

Clinical Approaches

- Dose to Trough above MIC
- Increase doses for high MIC organisms and patients with high CCr
- When in doubt, combine antibiotics. When sure of isolates, refine regimens
- Gram Stain is the best monitoring tool
- Computer software to Estimate AUICs