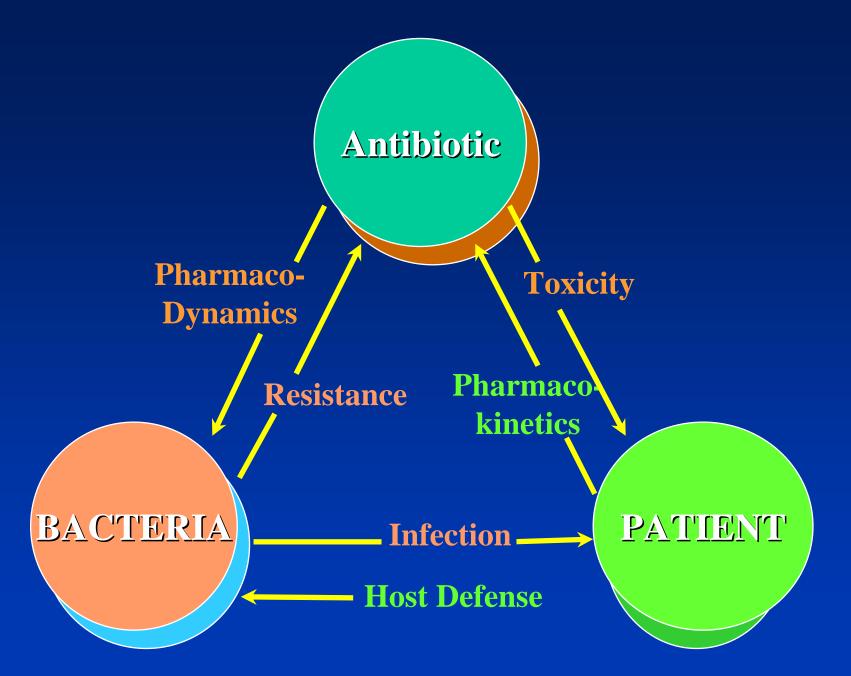


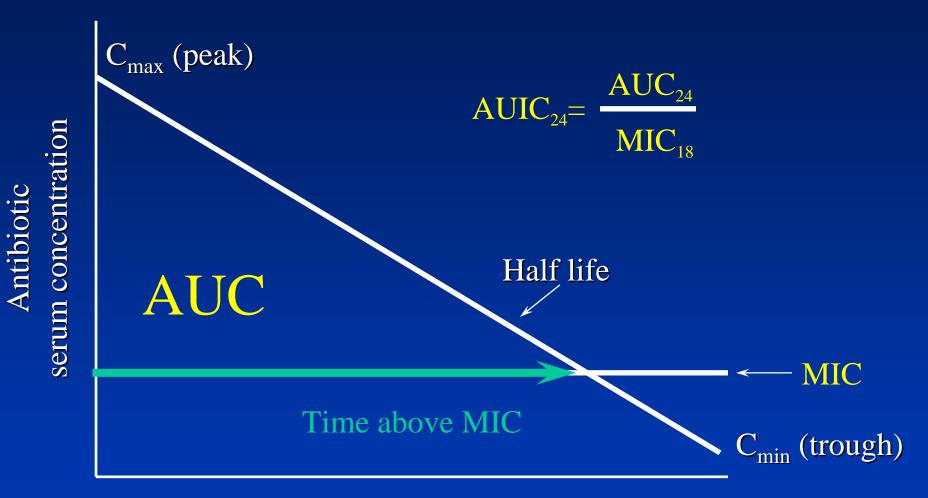
GSK-Chair of Infectious Diseases (Chaire GSK de Maladies Infectieuses / GSK-Leerstoel in Infectieziekten)

a joint academic activity of the Université catholique de Louvain and the Katholieke Universiteit Leuven

How we try to improve efficacy, decrease resistance and save money with antibiotics in hospitals ...


Jerome J. Schentag Pharm D

University at Buffalo


School of Pharmacy & Pharmaceutical Sciences

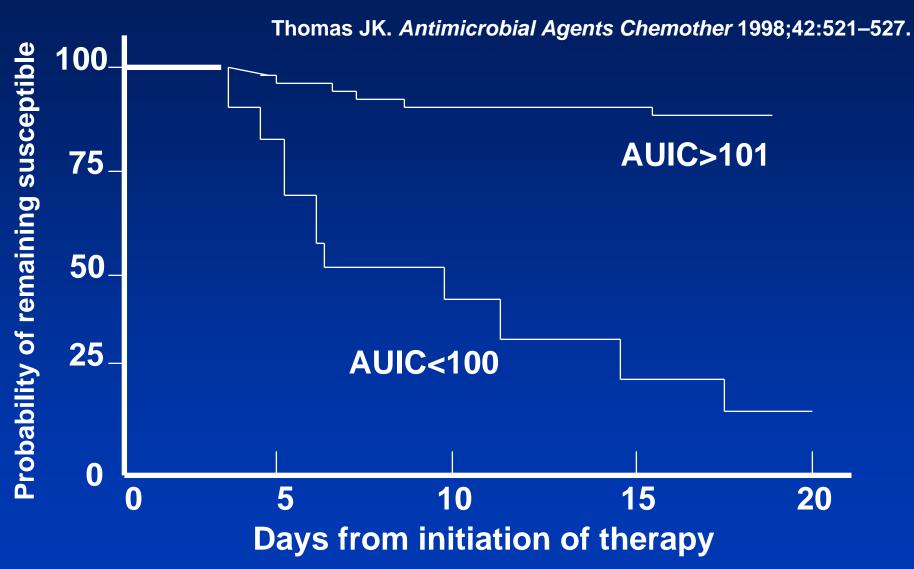
schentag@buffalo.edu

Presented at UCL on Thursday February 28th

Applied Pharmacokinetics and Pharmacodynamics: 4th Edition, 2006

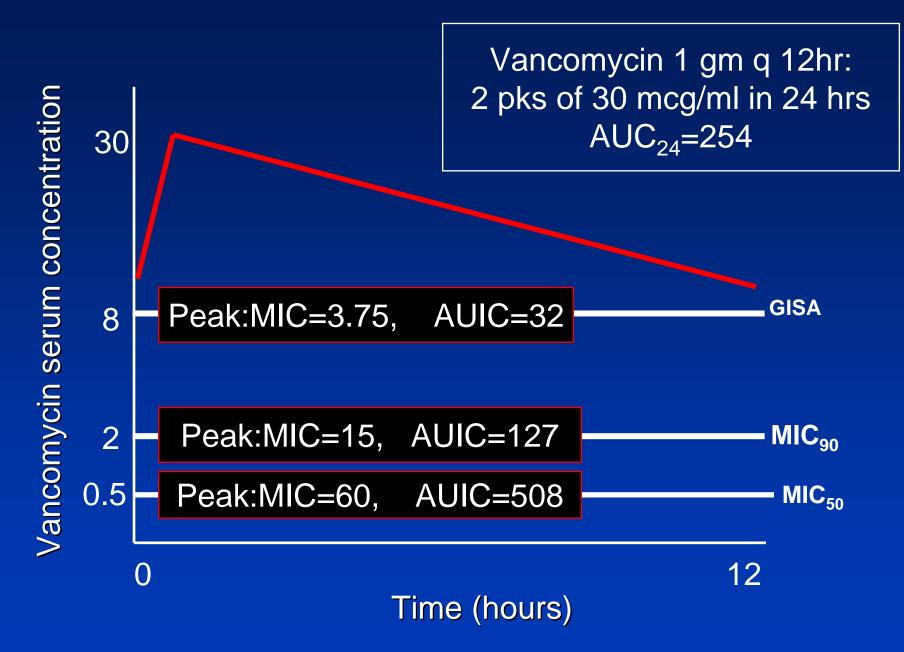
Time

Model Antibiotics for Human PK/PD trials:


- Ciprofloxacin
- Grepafloxacin
- Tobramycin
- Piperacillin
- Ceftazidime
- Azithromycin
- Linezolid

- Cefmenoxime
- Cefepime
- Aztreonam
- Synercid
- Imipenem
- Telithromycin
- Vancomycin

Advantages of Antibiotics


- You can readily isolate, grow and study the "receptor" for an antibiotic
 - Fortunate, because susceptibility varies tremendously between "receptors"
- Correlations between in vivo Pharmacokinetics and in vivo Pharmacodynamics are feasible; This also includes Resistance

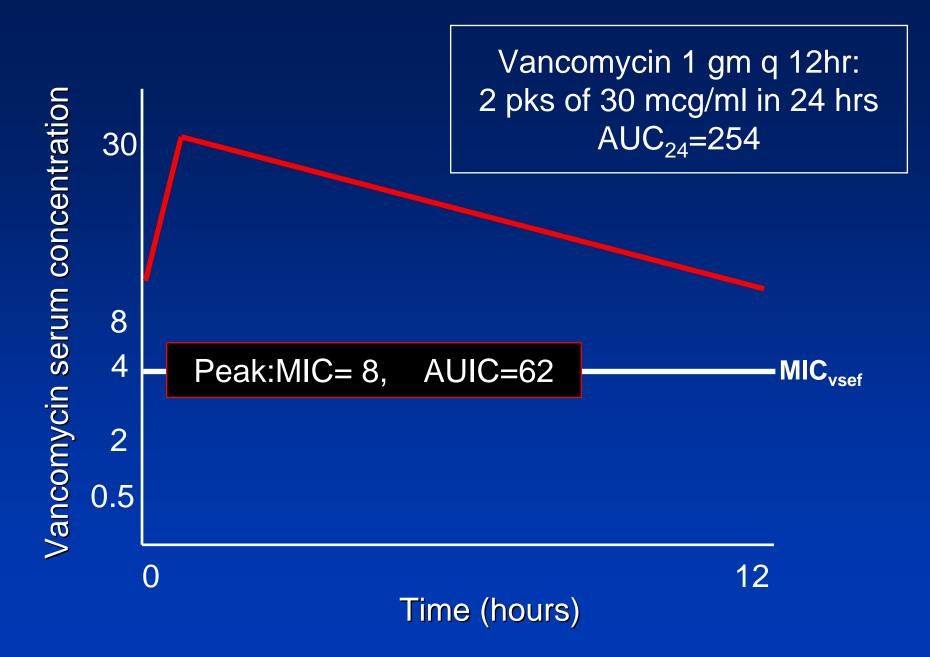
AUIC vs Resistance

Vancomycin – Role in Therapy

- Up until ~ 1990, it was the undisputed drug of choice for gram positives such as staphylococci and enterococci, and was always perceived as effective.
- Purpose of Serum Conc. Monitoring was to avoid toxicity; rigid range of concentration defined as peak ~ 30 mcg/ml and trough ~ 10 mcg/ml
- Problems followed increasing use
 - 1991: E. faecium became VREF
 - 1995-1998: Arrival of VISA and Declining success vs. MRSA, even when "susceptible"

Schentag JJ. Critical Care Med 29 (4 Suppl): N100-N107, 2001

Vancomycin: AUICs vs Time > MIC?


- Vancomycin is slowly cidal, and demonstrates time-dependent killing and a long half-life. With these properties, there ought to be good correlation between AUIC and time above MIC
- Dosing controls the blood levels in most patients, so any low AUICs or short time>MICs would be the result of high organism MICs
- Correlation study in 84 patients at MFH
 - This was 1993, and the goal was to understand VREF development in bacteremia patients...

Vancomycin Outcomes vs AUICs

	Outcome				
	Satisfactory	Unsatisfactory	Indeterminate		
MIC >1.0 µg/ml	1	4 a	0		
MIC <1.0 µg/ml	74	2	3		
AUIC <125	4	4 ^b	0		
AUIC >125 (76)	71	2	3		
Total Patients (84)	75	6	3		

^a *p* < 0.001 ^b *p* < 0.005

Hyatt, et al. Clin Pharmacokinet. 1995;28:143-160.

Schentag JJ. Critical Care Med 29 (4 Suppl): N100-N107, 2001

Enterococcus faecium (VSEF-VREF)

- Dangers of the inadvertent high MIC organism like *E. faecium*, with a fixed-AUC drug like vancomycin
- We lost the use of vancomycin for *E. faecium* by 1998
- Large increases in vancomycin dosing could have delayed this loss.
 - Target AUIC is 125 for VSEF (Hyatt et al. Clin PK 1995;28:143)
 - Double the dose (AUC₂₄ ~ 500) for MIC=4.0
 - Quadruple the dose (AUC₂₄ ~ 1000) for MIC=8

Peaks of ~150, troughs of 110....

- Alternatives for MIC > 8.0 mcg/ml:
 - Quinupristin/Dalfopristin (September 20, 1999)
 - Linezolid (April 18, 2000)

.....What about S. aureus, esp. MRSA? 12

MRSA: Issues With "Appropriately Dosed" Vancomycin?

- MRSA MICs are usually 0.5 to 1.0 mcg/ml
 - Slow killing of organisms in vitro and in vivo
- MRSA MBCs are increasingly 4-32 mcg/ml
 - Staphylococci that are not yet VISA or VRSA, but no longer responding to vancomycin at AUICs of 125-250
- Clinical Evidence of Problems with Vancomycin?; Failures even before VISAs with MICs ~ 2-4 mcg/ml

Patient 2 and Patient 3

- Patient 2
 - 78-year-old male
 - Developed MRSA pneumonia day 107, treated with vancomycin
 - Initial infection \times 15 days
 - 2nd infection \times 15 days
 - 3rd infection \times 8 days
 - 4th infection \times 7 days
 - MRSA now colonized
 - Vanco MIC≤0.5

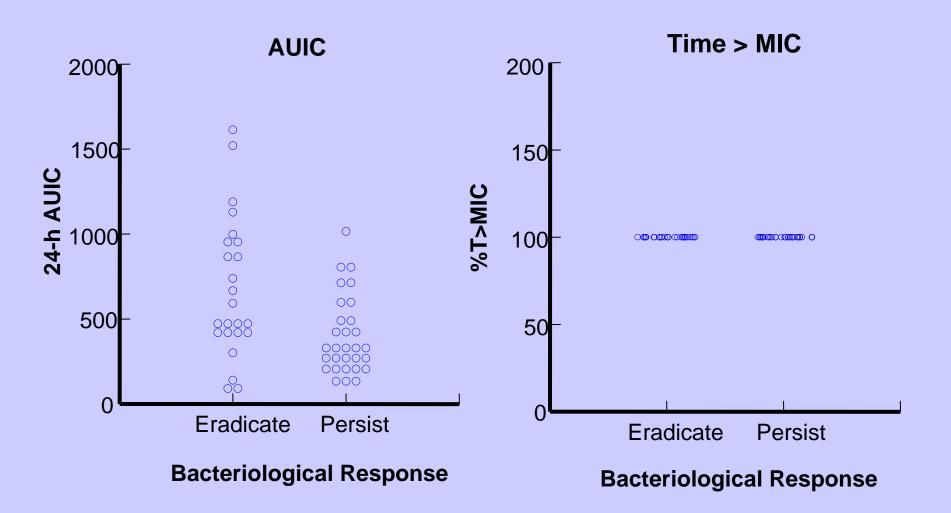
- Patient 3
 - 71-year-old female
 - Admitted from NH with MRSA pneumonia, treated with vancomycin
 - Initial infection × 10 days
 - 2nd infection \times 5 days
 - Patient expired, day 20
 - MRSA not eradicated
 - Vanco MIC≤0.5

Patient 2: Healthcare Resources Used

Event	Vanco AUIC ^a	Vanco Ievels ^b	Total (\$)	\$/day
Initial infection				
(1/13/98-1/27/98)	394	Rdm >20	29,055	1,937
2 nd infection				
(2/2/98-2/16/98)	195	ND	38,588	2,573
3 rd infection				
(2/21/98-2/28/98)	266	ND	16,385	2,048
4 th infection				
(3/18/98-3/24/98)	736	Tr>20	23,375	3,339

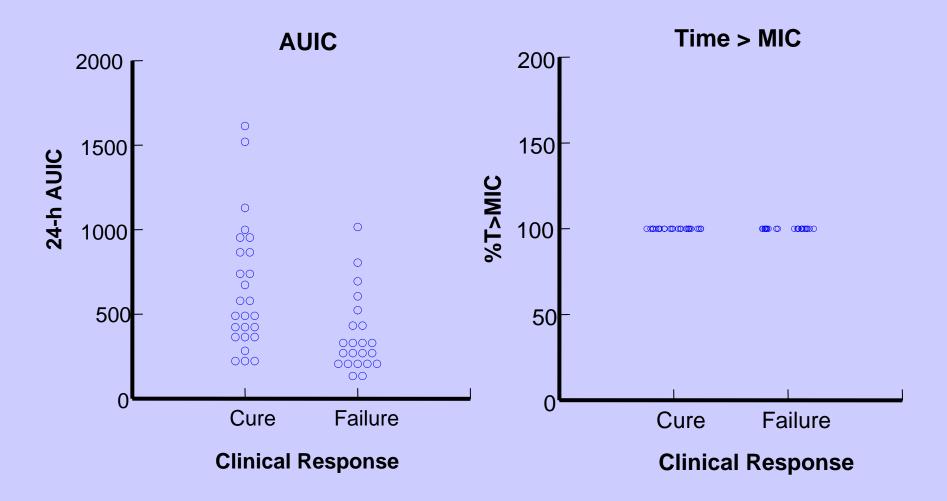
^a Values expressed are means.
^b Rdm = random; ND = not done; Tr = trough.

Why Is Vancomycin Failing?

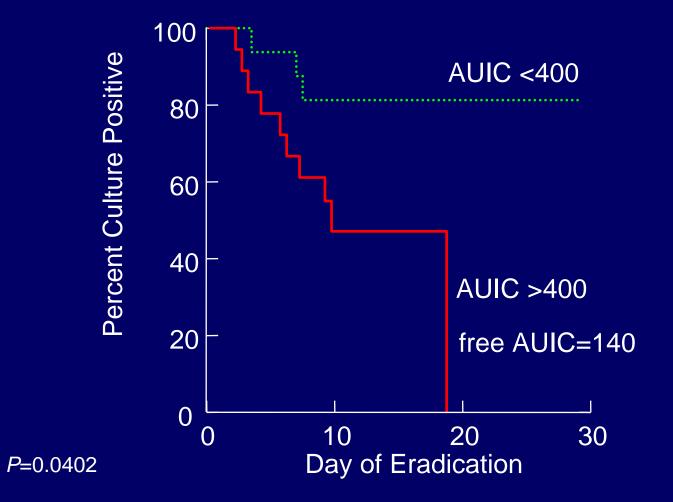

- Slowly or poorly cidal, hetero-resistance?
- MBC >> MIC for these vancomycin exposed organisms?
- Increasingly larger fractions of the organism population reach the definition of tolerance
- Vancomycin PK/PD target of 125 is too low for this drug; For MRSA, we may need AUICs of 400 or even more?

PK/PD study in S. aureus LRTI

- 108 patients in 1998 that qualified for PK/PD and LRTI out of a total of 160 pts at MFH that year (Mean Age=74, 67% on Ventilator at baseline); Main reason for exclusion was insufficient proof of LRTI
- All patients had PK/PD as AUIC₂₄; for endpoints we could often derive time to bacterial eradication (via daily cultures) and time to clinical cure (via daily scoring). We also collected the usual cure-failure micro and clinical data typical of registration trials.
- Clinical success was 59% overall; 54% for MRSA, 71% for MSSA
 - Oxacillin vs MSSA was 100% effective
 - Failure overall was associated (LR analysis) with MRSA, low albumin, low CCr, multi-lobe involvement and AUIC <400


AUIC vs T>MIC and Microbiological Response

Moise, Forrest, Schentag et al. Clinical Pharmacokinetics 2004; 43: 925-942



AUIC vs T > MIC and Clinical Response

Moise, Forrest, Schentag et al. Clinical Pharmacokinetics 2004; 43: 925-942

Comparison of Vancomycin days to eradication for MRSA Infections

Moise & Schentag. Clinical Pharmacokinetics 2004; 43: 925-942

Computerized Estimation of AUIC

- Selected patients who are now undertreated will benefit from the addition of a second antibiotic, or higher doses
 - Less resistance, fewer failures, shortened therapy
- Most cephalosporin doses will be lowered (elderly patients, low MIC organisms)
 - Cost Savings in the antibiotic budget

Use of AUIC in Patient Care

- 77 yoM, 70 in, 155 lb, with COPD, Lung Ca, and Diabetes, 7 days post-op LLL resection.
- Now with new S&S of LRTI, on a Ventilator
- Cefazolin for prophylaxis day 1, currently receiving no ABX. Serum creatinine is 1.2 mg/dl
- Cx taken, Ceftazidime 1.0 gm Q12hr is ordered.
- You were consulted for antibiotic management