

GSK-Chair of Infectious Diseases (Chaire GSK de Maladies Infectieuses / GSK-Leerstoel in Infectieziekten)

a joint academic activity of the Université catholique de Louvain and the Katholieke Universiteit Leuven

Pharmacodynamics of Antibiotics: How it can save the life of your (future) Patients

Jerome J. Schentag, Pharm D University at Buffalo Schentag@buffalo.edu http://www.pharmacy-ce.com

Presented at the KU-Leuven on Tuesday February 26th

Pharmacodynamic Parameters

- Like Pharmacokinetic parameters or like serum levels, Pharmacodynamic parameters are only numbers and have no absolute meaning
- They may correlate with something meaningful; If so, they derive great utility from these correlations
- Usually, the correlate is microbial killing, although there may also be a correlate to clinical outcome, in settings where the bacterial isolate is the cause of disease and its symptoms
- Examine the elements of ABX cure and response

Clinical Use of Antimicrobials

- Prophylaxis
- Empirical Therapy
- Known Pathogen Therapy
- Switch Therapy/Streamlining
- Emphasis on Clinically useful information, from years of study

Time

Optimal PK and PD attributes

- For optimal antimicrobial effect:
 - C_{max} /MIC ratio should be > 8 to 10
 - AUC/MIC ratio should be > 125
- To minimize resistance development:
 - AUC/MIC ratio should be >100

AUIC vs Resistance

Antibiotics for Study in LRTI

- Concentration Dependent Actions
 - Fluoroquinolones
 - Aminoglycosides
- Concentration Independent Actions
 - -Beta Lactams
 - Vancomycin

Time, hours

Aminoglycosides

- Low AUIC with typical dosing and levels
 - breakpoint MIC is 0.25 mcg/ml for AUIC of 125
- We say their activity is decreased
 - with the infection site pH below 6.0
 - at urine sites due to cations
 - with decreased PO_2
 - due to binding at the infection site
- Combination Therapy is necessary in most situations, because of a low AUIC

Antibiotic Combinations

		MIC	
Compound	AUC ₂₄	P.aerug	AUIC ₂₄
Tobramycin	54	1.0	54
Ceftazidime	400	2.0	200
Total			
(Tob+Ceftaz)			254

Applying AUICs to Empiric Therapy

- Measure or Calculate PK parameters (AUC)
- Measure or default MICs
 - Defaults in settings of breakpoints
 - Exact Values when available, and for streamlining
- Measure Antibiotic Endpoint as Bacterial Killing
 - Gram Stain pre vs post (i.e., Serial)
 - The only true 10 minute determination of the correct dose
 - Culture
 - Use culture positivity as an index of Low AUIC
 - Use early negative cultures to shorten duration of therapy

Measures of Antimicrobial Action

- On the patient
 - Clinical Cure (contains no time sensitive information)
 - Rate of improvement in signs and symptoms
 - Daily symptom scoring and quantitative indices of antimicrobial effects
- Clinical Cure endpoint is not sensitive to:
 - Rate of improvement over time
 - combination antibiotic effects vs single agents

Measures of Antimicrobial Action

- On the bacteria
 - Bacteriological cure (contains no time sensitive information)
 - Time of bacterial eradication in relation to the time that therapy (dosing) starts

Time to Eradication vs AUIC

Challenges in Antibiotic Monitoring

- AUIC values provide a precise means of expressing PK/PD changes in Exposure.
- Bacterial Eradication can be precisely monitored by serial cultures.
- We need an equally precise means of expressing and quantitating changes in the patients' condition
 - This is the weak link in monitoring antibiotic therapy at the moment.

Development of a Scoring System for Nosocomial LRTI patients

- Monitoring elements that are time-sensitive:
 - fall in body temperature
 - fall in WBC
 - Improvement in hypoxia
 - fall in the frequency of suctioning
 - declines in # of WBCs on serial gram stains
 - declines in # of bacteria on serial gram stains
- Scored Items rated 1-4. The top Score of 40= Severe Disease

Observations in Scoring

- Patients with nosocomial LRTI have a high pretreatment score
 - Maximum score is 40, and many of these are in the high 30s
- High initial scores drop rapidly in the first few days, especially with 24-48 hr bacterial eradication
- Falls to a high baseline are common, with no further improvement regardless of the duration of antibiotic therapy

Correlations between scoring and Bacterial Eradication

- Patients with rapid bacterial eradication have a rapid initial decline in score

 i.e. the slope declines quickly
- The score may then flatten out, as the patient approaches his baseline
 - Low baseline is an indicator of no underlying respiratory pathology; This will be uncommon.
 - High baseline usually indicates underlying pathology

Observations

- Scoring is feasible in nosocomial LRTI patients
- Scoring is only effective when used daily in LRTI patients: This is not for diagnosis, only for monitoring drug effect
- Elements of the score were chosen to detect fast clinical response, if it occurred
- AUIC predicted the slope of the improvement score, especially with quinolones that kill bacteria in a concentration dependent manner

Summary

- AUIC fixes problems with combination therapy and multiple organisms
- AUIC allows clinicians to optimize therapy to decrease resistance
- Pick a good dose, for each patient, as early in the regimen as possible
- Speeds time to eradication for the concentration dependent antibiotics
- Scoring changes in clinical response is feasible, and results correlate with AUIC